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Abstract: Monte Carlo simulations of the interactions of Na+ and Cl- ions with λ repressor protein and its
DNA operator site have revealed an interesting effect [Jayaram, B.; DiCapua, F. M.; Beveridge, D. L.J. Am.
Chem. Soc.1991, 113, 5211-5215]. When the protein is close to its binding site on DNA, the presence of the
small ions strengthens the electrostatic net attractive force between the formally charged protein residues and
the phosphate groups on DNA. The effect has been interpreted as a manifestation of the release of counterions
condensed on DNA. We show that although counterions are indeed released, the enhancement of the attractive
force at short distances has a different origin. There is a direct attraction between DNA phosphates and positively
charged protein residues, and a direct repulsion between DNA phosphates and negatively charged protein
residues. Close to the DNA, the net direct force is attractive. By weakening the direct repulsion between DNA
phosphates and the negatively charged glutamate and aspartate residues on the protein, the presence of small
ions increases the net attraction. A complete understanding of protein-DNA electrostatics thus involves
consideration of the interaction of DNA phosphates with anionic as well as cationic protein residues. As a side
result of our calculations, we estimate the effect of small ions on the binding free energy of the repressor-
operator complex (from the isolated species) as unfavorable at about 40-45 kcal/mol.

1. Introduction

Our intuitive expectations of the effect of small ions on
electrostatic interactions have largely been molded by the
screening theory of Debye and Hu¨ckel. The distance dependence
of the attractive potential between a Na+ cation and a Cl- anion
in NaCl solution has the limiting form-exp(-κr)/r, where the
effect of the other Na+ and Cl- ions is incorporated into the
screening parameterκ, proportional to the square root of NaCl
concentration. If we subtract the direct Coulomb potential-1/r
from the screened potential to isolate the effect of salt, we get
the function [1 - exp(-κr)]/r, which is positive for all
separation distancesr. Thus, the effect of the other Na+ and
Cl- ions on the direct attractive interaction between a given
Na+ and Cl- pair is to add an unfavorable free energy to it,
effectively decreasing the attraction.

Jayaram, DiCapua, and Beveridge1 have performed a Monte
Carlo (MC) free energy simulation of a protein-DNA complex
that isolates the effect of small ions on the interaction. Theλ
repressor is a transcription regulatory protein that binds to a
specific promotor sequence of DNA base pairs, the operator
site. There are many positively charged (lysine, arginine) and
negatively charged (glutamate, aspartate) residues on the protein,
but there is an excess of positive protein charge at the interface
of the complex, and the salt concentration dependence of the
association constant for the complex is about the same as that
for the binding of a divalent or trivalent cation (positive charge)
to the polyanionic field of DNA. A reasonable expectation is
that the direct electrostatic attraction between protein and DNA
would be weakened by the screening effect of the Na+ and Cl-

ions present in the system. The binding free energy, as usually

defined, is expected to be stronger (more negative) in the
absence of small ions than in their presence. In fact, this
expectation is verified (see below). An interesting and coun-
terintuitive influence of the small ions was nonetheless revealed
by the simulation.

Usually, a binding free energy is referred to infinite distance;
it measures the work required to move the binding molecules
from a large separation distance to the docking, or bound,
position. But suppose the binding free energy is redefined to
mean the work required to move theλ repressor from a distance
relatively close to the DNA into its docking position (which is
still closer). This definition could actually be of more relevance
in a biological context than the conventional definition. Jayaram
et al. found that the presence of Na+ and Cl- ions acts to make
the binding free energy, thus redefined, more negative; the
redefined binding free energy is stronger in the presence of the
small ions than in their absence. The effect is counterintuitive,
because screening theory predicts that salt weakens the binding
free energy of an oppositely charged ion pair, regardless of the
starting distance between the ions.

The authors interpreted their result as reflecting the phenom-
enon of counterion release. When a charged ligand penetrates
the layer of counterions condensed on an oppositely charged
polyion, theory predicts that some of the condensed counterions
will be released into bulk solution, providing an entropic
contribution to the driving force for ligation.2,3 In the absence
of small ions, there would be no condensed layer of counterions,
and this source of favorable entropy (negative free energy)
would be absent. Counterion release strengthens the direct
attraction between oppositely charged ligand and polyion, and
if it is assumed to be the dominating influence of small ions at

(1) Jayaram, B.; DiCapua, F. M.; Beveridge, D. L.J. Am. Chem. Soc.
1991, 113, 5211-5215.

(2) Manning, G. S.; Ray, J.J. Biomol. Struct. Dyn.1998, 16, 461-476.
(3) Ray, J.; Manning, G. S.Macromolecules1999, 32, 4588-4595.
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near distances, then the negative free energy observed in the
simulation can be understood. The interpretation of Jayaram et
al. is all the more reasonable, since, as they point out, the
maximum enhancement of the binding (from close distances)
is observed to occur when the protein is at a distance corre-
sponding to the width of the condensed layer of counterions,
the latter having been clearly demarcated by an inflection point
in the counterion distributions measured in earlier simulations.4,5

The existence of a layer of counterions condensed in the strict
sense of “charge renormalization” has been strikingly confirmed
by a combination of small-angle X-ray and small-angle neutron
scattering.6 The current direction of our own research into
polyelectrolye behavior2,3,7,8 puts us in a good position to
calculate the simulated small-ion effect by analytical theory,
and we thought it would be interesting to see if we could validate
the reasonable but essentially speculative interpretation of the
simulation as a reflection of counterion release.

2. The JDB Salt Effect Function

2.1. Definition. In the Monte Carlo simulation of Jayaram
et al.,1 explicit Na+ and Cl- ions are present in addition to the
repressor protein and the DNA operator site. The simulated
aqueous solvent is represented by a continuum dielectric
coefficient provided with a distance dependence for greater
realism at close distances. The DNA has negatively charged
phosphate groups P, and the protein has both positively charged
lysine and arginine residues and negatively charged glutamate
and aspartate residues, generically symbolized as R. The input
in the simulation is a set of direct Coulomb interactionsuij (with
an r-12 repulsive core) between pairs of charges{ij}. All
interactions involving small ions are included, i.e.,uP-Na, uP-Cl,
uR-Na, uR-Cl, uNa-Na, uCl-Na, anduCl-Cl. But the direct protein-
DNA interactionsuP-R are omitted (as well as the irrelevant
PP and RR interactions). Thus, the authors simulate the effect
of small ions on the repressor-operator energetics in isolation
from the direct protein-DNA interaction.

A computation is carried out for a fixed distancer between
protein and DNA, mutually oriented as in the actual bound
complex, and results for a family of computations, each
corresponding to a different value ofr, are reported. A natural
reference state for the simulation is the complex itself, the
structure of which is available from crystallographic data. Thus,
the reference state is not the conventional one at large separa-
tions, and the value of the free energy reported for distancer
then represents the contribution of small ions to the work
required to bring the protein from distancer to its final
“docking” position. In our theoretical free energy, which we
wish to compare to the simulated free energy, we will also use
the docked position as reference.

Let w(r) be the usual potential of mean force for some pair
of charged particles A and B that we wish to study. Its reference
state is at infinity,w(∞) ) 0, so thatw(r) is the work required
to bring A and B from infinite separation to separation distance
r in the presence of small ions. Letu(r) be the direct potential
for this pair (in the absence of small ions). If the direct potential
is subtracted out of the overall potential, then what is left,

namely,w(r) - u(r), is the effect of small ions on the work
required to bring the pair from infinite separation tor. As noted,
we change the reference state by lettinga be some cutoff
distance of closest approach. Then the small-ion effect on the
overall work w(a) - w(r) required to bring A and B from
separation distancer to a is given by the formula

The subscript “s” in the functionws0(r) representing the small-
ion effect reminds us of “salt”, a term intended to apply to all
small ions in the system,inclusiVe of the DNA and protein
counterionsas well as of any added NaCl; the subscript 0 refers
to the choice of reference state (which, if not zero, is at least
the distance of closest approach of A and B). We will refer to
the energy functionws0(r) as the JDB salt effect function, after
the authors of the motivating simulation.1

To develop insight into the JDB function as defined in eq 1,
we look first at the case of infiniter. For well-behaved
potentials, bothw(∞) andu(∞) vanish, andws0(∞) reduces to
w(a) - u(a), that is, the effect of small ions on the binding free
energy as conventionally defined (the work involved in moving
the binding particles from infinity to their bound state). Both
the JDB simulation and our calculated results provide positive
values forws0(r) whenr is large, in accord with the expectation
that the presence of small ions weakens the attractive free energy
of binding from distant separation. Next, we note that the
function w(r) - u(r), which gives the effect of small ions on
the conventional potential atr, may be obtained by flipping the
JDB function about the horizontal axis (i.e., changing its sign)
with a vertical shift to the value 0 at∞. Thenw(r) - u(r) can
be seen to be positive for allr in the JDB simulation and in all
cases studied in this paper, whatever the appearance of the JDB
function. Thus, the presence of small ions always weakens the
attractive potential at every distance relative to infinite separa-
tion. Finally, at the cutoffr ) a, eq 1 reportsws0(a) ) 0 as the
trivial consequence of the choice of reference state in the
definition of the JDB energy as the distance corresponding to
the bound state.

Attention is now directed to Figure 1, where we give a
schematic drawing of the result of the JDB simulation. In a
range of close distancesr, the JDB functionws0(r) is negative.
This means that the small ions in the system act to strengthen
the attractive free energy of binding, redefined to mean the work
required to bind the protein starting from distancer. Another
way to interpret Figure 1 is to consider the negative slope of
ws0(r), which extends fromr ) 0 to the value ofr where the
function has its minimum. If we differentiate both sides of eq
1 with respect tor, we will see that a negative value for the

(4) Jayaram, B.; Swaminathan, S.; Beveridge, D. L.; Sharp, K.; Honig,
B. Macromolecules1990, 23, 3156-3165.

(5) Young, M. A.; Jayaram, B.; Beveridge, D. L.J. Am. Chem. Soc.
1997, 119, 59-69.

(6) Essafi, W.; Lafuma, F.; Williams, C. E.Eur. Phys. J. B1999, 9,
261-266.

(7) Manning, G. S.Ber. Bunsen-Ges. Phys. Chem.1996, 100, 909-922.
(8) Manning, G. S.Physica A1996, 231, 236-253.

Figure 1. Schematic plot illustrating the results of the JDB simulation.

ws0(r) ) [w(a) - u(a)] - [w(r) - u(r)] (1)
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slope ofws0(r) means that the force between protein and DNA
in the presence of small ions is less than in their absence. For
an attractive interaction, the force is a negative number, so “less
than” in this context means a negative value of greater
magnitude. The presence of small ions makes the attractive force
larger in this range of distances. From either standpointsenergy
or forcesthe physical significance of the negative region of the
JDB function shown in Figure 1 runs counter to expectation
from simple screening of an attracting pair of oppositely charged
ions (see Figure 2 with accompanying analysis below).

2.2. The JDB Function in Debye-Hu1ckel Theory. In this
section we try to deepen our insight into the JDB salt effect
function by deriving Debye-Hückel limiting laws for several
pertinent examples. Let us start with the interaction between a
pair of oppositely charged univalent ions A+ and B- immersed
in an aqueous NaCl solution. We measure potentials in units of
kBT (Boltzmann constant times Kelvin temperature). The
potentials contain the factorq2/D, whereq is the unit charge
andD the dielectric constant of bulk water, and it is convenient
to use the Bjerrum lengthλ, given in esu-cgs units, by

about equal to 7.1 Å in water at room temperature. The Debye-
Hückel limiting law expressing the potential of mean force for
ions A+ and B- separated by distancer is a screened Coulomb
potential,

whereκ is the inverse Debye length of the NaCl solution,

whereLAv is Avogadro’s number andcNaCl is the salt concentra-
tion in molarity units. The value of 1/κ is about equal to 30.5
Å in aqueous 0.01 M NaCl solution. The direct Coulomb
potential for A+ and B- is

The potentials may be evaluated both atr and atr ) a and the
corresponding expressions substituted into eq 1. After this step,
the simplifying limit a f 0 may be implemented without
encountering a singularity. The result is

We restate the meaning ofws0(r) in the context of the present
example. The ions A+ and B-, conceptualized as structureless
points, are brought from distancer to zero distance in an aqueous
NaCl solution. A certain amount of negative work is done in
this process (indeed, the work is negatively infinite). The JDB
function ws0(r) gives the effect of the ion atmospheres on this
work in the framework of Debye-Hückel limiting law theory.
The contribution of the ion atmospheres is not infinite.

We show in Figure 2 plots ofws0(r) for two different salt
concentrations according to eq 6. Note thatws0(r) is everywhere
positive. The effect of the ion atmospheres is to make the overall
negative work less negative; the presence of salt acts to diminish
the direct attractive force between the A+ and B- charges.
Indeed, Figure 2 is an effective way to illustrate Debye-Hückel
screening. The second thing to notice is that the screening is
greater for the higher salt concentration.

As a second example, we continue to let the charged entity
B be a univalent negative ion B-, which now we might want
to think of as an isolated phosphate group on DNA. For species
A we choose an amino acid, represented as a bipolar ion with
a unit positive charge at one end and a unit negative charge on
the other end, separated by a rigid spacingl. The bipolar ion A
is allowed to approach B- radially with its positive end coming
first; in other words, the distance between the positive end and
B- is r, and the distance between the negative end and B- is r
+ l. The potentialsw andu of eqs 3 and 5 may be applied to
each end of the bipolar ion (with a sign change for the potential
between B- and the negative end of the bipolar ion), and the
result for the JDB salt effect function from eq 1 is

In this equation we have again taken the limit of zero cutoff
distance, sows0(r) gives the effect of salt on the work required
to bring the point positive charge at one end of A from distance
r to the location of the point charge B-, the negative end of A
trailing along radially. Note that there is no need to consider
the intramolecular interaction between the two ends of the
bipolar ion, because it would cancel in the difference between
the initial and final states.

In Figure 3 we show one of the curves from Figure 2 for the
approach of a counterion A+ to B- together with a plot of eq
7 for the approach of an amino acid A to B- in aqueous NaCl
of the same concentration. The salt effect for the latter situation

Figure 2. JDB functionws0(r) in units of RT for a pair of oppositely
charged univalent point ions in Debye-Hückel theory. Solid curve,
0.1 M salt; dotted curve, 0.2 M salt.

λ (cm) ) q2/DkBT (2)

w(r) ) -(λ/r) exp(-κr) (3)

κ
2 (cm-2) ) 8πλ(LAv/1000)cNaCl (4)

u(r) ) -λ/r (5)

ws0(r) ) λ e-κr + κr - 1
r

(6)

Figure 3. JDB function (heavy curve, Debye-Hückel theory) in units
of RT for a bipolar ion of length 4 Å approaching a univalent point
ion, the oppositely charged end of the bipolar ion coming head-first at
distancer from the point ion. The light curve for an approaching pair
of point ions is included for comparison and is taken from Figure 1.
The salt concentration for both curves is 0.1 M.

ws0(r) ) λe-κr + κr - 1
r

+ λ
e-κl(r + l - l e-κr) - r

l(r + l)
(7)
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is qualitatively the same as that for the former. Since the positive
end of the bipolar ion is closer to B- than the negative end, the
behavior of A is qualitatively that of a cation. However, the
negative end of A does interact repulsively with B-, so the
overall electrostatic interaction of the net zero charge of A with
B- is substantially less than that for an unmitigated cation.

For our next example, let species A be a point counterion
A+ and B an infinite negative line charge of unsigned reduced
charge densityê:

wherein a line segment of lengthb contains a unit amount of
charge. Recalling thatb is about 1.7 Å for the solution structure
of DNA, we see thatê for DNA is about 4.2, which is quite
large. The use of Debye-Hückel theory would be accurate only
for sufficiently small values ofê, but in this section we are not
so much interested in accuracy as we are in gaining qualitative
understanding.

The potential of mean force for A and B in units ofkBT as
given by Debye-Hückel limiting law theory is

whereK0 is the BesselK function (modified Bessel function of
the second kind) of order zero, and the direct potential is

After substitution of eq 10 into eq 1, we pass to the limit of
vanishing cutoffa without encountering a singularity, and find

whereγ is the Euler constant,γ ) 0.5772.... Figure 4 illustrates
the present case. Once again, we have ordinary screening
behavior.

In the final example of this section, the negative line charge
B interacts with bipolar ion (amino acid) A possessing positive
and negative ends separated by rigid spacingl. The bipolar ion
approaches the line charge in radial orientation with its positive
end head-on. The distance between the positive end of A and
the line charge is equal tor, and the distance of the negative
end from the line charge is therefore equal tor + l. The Debye-
Hückel JDB salt effect with cutoffa taken to zero is derived as

Figure 5 presents a graph ofws0(r)/2ê and reveals a feature that
we did not expect: the curve descends with increasingr into
negative values before hitting a minimum and rising into a
positive region of ordinary screening. Note from eq 12 that the
charge densityê merely plays the role of a scaling factor, as it
must in linear Debye-Hückel theory. The minimum is therefore
present even at low charge densities where Debye-Hückel
theory is accurate. As part of Figure 5 we have shown a plot of
the ordinary potential of mean force for this case,w(r)/2ê )
-K0(κr) + K0[κ(r + l)]. This plot exhibits an apparently
ordinary screened Coulomb attraction. The bipolar ion ap-
proaching the anionic line charge with cationic end head
foremost looks like a cation when analyzed with the overall
potential of mean force but not when viewed through the JDB
salt energy function.

Negative values of the JDB function mean that the direct
attractive force between two ionic particles is enhanced by salt
at short distances. One might not have guessed thatws0 could
have negative values in limiting law Debye-Hückel theory.
How can we interpret it? The positive end of the bipolar ion is
closer to the negative line charge than the negative end. The
positive end is therefore less screened from the negative line
charge than is the negative end. The salt exerts a stronger
screening effect on the repulsive interaction between the more
distant negative end and the negative line charge than it does
on the closer attraction of the positive end. The free energy of
screening is therefore net negative (diminishing the repulsive
component), at least at shorter distances, where the overall
interaction is large. A rough numerical analysis (not shown)
does, in fact, indicate a strong correlation of the location of the
minimum with the Debye screening length,rmin ≈ 1.11κ-1.

The interpretation of the previous paragraph cannot be the
whole story, since the same logic would apply to the salt effect
on the radial approach of a bipolar ion to a point charge. But
Figure 3 shows only positive values of the corresponding
function ws0 and no minimum. We are grateful to a reviewer
for pointing out that nothing as complicated as a line charge is
needed to illustrate negative values ofws0. Although theradial
approach of a bipolar ion to a point charge generates only
positive values at all distances, the approach of a bipolar ion to
an offsetpoint charge produces a JDB function that looks like
the one in Figure 5 (for example, a bipolar ion with positive
end head-on approaches the origin along thex-axis, while a

Figure 4. JDB function in units of 2êRT for a univalent counterion
approaching a line charge in Debye-Hückel theory. In these units, the
graph is the same for any line charge densityê. Solid curve, 0.1 M
salt; dotted curve, 0.2 M salt.

ê ) λ/b (8)

w(r) ) -2êK0(κr) (9)

u(r) ) 2ê ln r (10)

ws0(r) ) 2ê[-ln 2 + γ + K0(κr) + ln(κr)] (11)

ws0(r) ) 2ê{-ln 2 + γ + K0(κr) + K0(κl) - K0[κ(r + l)] +
ln(κr) - ln[(r + l)/l]} (12)

Figure 5. JDB functionws0(r) (heavy curve, Debye-Hückel theory)
in units of 2ê RT for a bipolar ion of length 4 Å approaching a line
charge, the oppositely charged end of the bipolar ion coming head-
first at distancer from the line. The light curve is the potential of mean
forcew(r) for this case with the same units (the descent is monotonic
even to the left of the portion of the curve shown). The salt
concentration for both curves is 0.1 M.
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negative point charge is fixed, not at the origin, but at some
nonzero point on they-axis). Subtle distance dependencies are
involved. Note that although the line charge is not present in
this example, the approaching ion is bipolar, with its distant
negative end repelling the targeted negative charge.

A line charge is important to our considerations, because it
will serve as our model for DNA. Debye-Hückel theory
provides an accurate description of electrostatic interactions
involving line charges of sufficiently low charge density. We
have learned, therefore, that small ion enhancement of the direct
attraction at short distances between a line charge of low charge
density and a bipolar ion approaching with counterionic end
head-first occurs, but (1) is not associated with counterion
release from a condensed layer, since a condensed layer of
counterions is absent from limiting law Debye-Hückel theory,
and (2) is associated with the repulsion between the line charge
and the trailing co-ionic end of the bipolar ion, since the
enhancement effect does not occur when a pure counterion
approaches the line charge (Figure 4).

2.3. Counterion Release.The plots ofws0 in Figure 5 are
similar in appearance to the simulated data of Jayaram et al.1

for the λ repressor-operator interaction (compare with Figure
1). The DNA operator site, however, has a high charge density,
about 4 times the threshold value for emergence of a condensed
layer of counterions. Unmodified Debye-Hückel theory can
be characterized not merely as inaccurate at such high charge
densities but qualitatively inapplicable, since it does not provide
the condensed counterions that dominate so many aspects of
polyelectrolye behavior. In particular, counterions are released
from the condensed layer surrounding DNA when basic
(positively charged) protein residues penetrate the layer. To
determine the effect of the presence of these ions on the free
energy of attraction, we need a potential of mean forcew(r)
that is applicable at high charge densities. In this section we
study the attraction of a point counterion to a line charge (more
precisely, a linear array of discrete charged points) by means
of a potential appropriate to charge densities above the threshold
condensation value.

An ion-polyion potential of mean force, the work required
to bring a line charge and a pointZ-valent ion of opposite sign
from infinity to r, has been derived previously in the framework
of counterion condensation theory.3 Separate expressions for
w(r) apply to three disjoint ranges of distancesr. The near range
extends out from the line charge to distancer ) (1/e)κ-1, where
e is the base of natural logarithms. An intermediate range runs
from r ) (1/e)κ-1 to r ) κ-1. Both the near and intermediate
ranges are therefore inside a Debye length. Counterions in the
near region correspond to the condensed layer.3 Space is
completed by a far region, outside the Debye length, reaching
to infinity from r ) κ-1. The theoretical potential is continuous
across the near-intermediate and intermediate-far interfaces.
The joining conditions are treated approximately, however, and
the potential is not smooth across the interfaces. The following
formulas are for the pair potential between a line charge and a
Z-valent oppositely charged ion brought from infinity tor in
background 1-1 salt like NaCl. If the line charge is negative,
the counterions are Na+ ions. The threshold for condensation
is thereforeê ) 1, and the formulas are applicable forê > 1.
The Z-valent ion can be (but is not necessarily) a singled-out
Na+.

In the first two of these formulas,b is the spacing of the linear
array of charges modeling the polyion. Note that in the far
region, Z-1w(r) is given by a Debye-Hückel formula even
thoughê > 1. This surprising result (one might have thought
that a counterion at a far distancer would see only the net charge
on the polyion, intrinsic charge minus charge of condensed layer,
ênet ) 1) stems from cancellation of two distinct nonlinear
effects.3

Along with these formulas forw(r), the number of condensed
counterions can also be calculated as a function of positionr
of theZ-valent ion. IfP is the number of charges on the polyion
andθ the number of condensed counterions per polyion charge,
then Pθ is the number of condensed counterions. When the
Z-valent counterion is at infinity,Pθ ) P(1- ê-1), a value that
is maintained as theZ-valent counterion approaches to a far
distancer. When theZ-valent counterion penetrates inside the
Debye-Hückel cloud, i.e., into the intermediate region,Pθ
decreases:

This equation tells us that when theZ-valent ion has encroached
upon the far-intermediate interfacer ) κ-1, the number of
condensed counterions isP(1 - ê-1). As the Z-valent ion
penetrates up to the near-intermediate interfacer ) (1/e)κ-1,
the number of condensed counterions progressively decreases
to the valueP(1 - ê-1) - Z, that is, ultimatelyZ univalent
counterions are released from the condensed layer. The number
of released counterions does not increase further as theZ-valent
ion penetrates into the near region up to the position of the
polyion. The main point here is that the potential of mean force
w(r) contains the effect of released counterions.

An unusual feature ofw(r) merits graphical illustration. Figure
6 shows plots ofZ-1w(r), which is independent ofZ, for two
salt concentrations. The three regions are clearly visible (because
the approximate joining conditions could not produce a smooth
curve). A free energy barrier impedes progress of theZ-valent
ion toward the polyion. If theZ-valent ion is a singled-out
univalent counterion, the barrier generates two distinct peaks
in the counterion radial distribution function, an inner one
corresponding to the condensed layer, and an outer one
corresponding to the Debye-Hückel cloud.3 Both the attraction
in the far region and the repulsion in the intermediate region
are stronger for the lower concentration. There is little depen-
dence on salt in the near region (condensed layer).

Corresponding results for the JDB salt effect function are
readily obtained. The direct potentialu(r) (divided byZ) is given
by eq 10. For the present case, eq 1 for the JDB function
becomes

wherewnear(a) is the potential evaluated at the cutoff distance
a, reasonably taken as less than (1/e)κ-1, and hence in the near

Near region:

Z-1w(r) ) -2êK0(κr) - 2(ê - 1) ln(κb) + 1 (13)

Intermediate region:

Z-1w(r) ) -2êK0(κr) + 2(ê - 1) ln(κr) ln(κb) - ln(κr)
(14)

Far region:

Z-1w(r) ) -2êK0(κr) (15)

Pθ(r) ) P(1 - ê-1) + Z ln(κr) (16)

ws0(r) ) [wnear(a) - u(a)] - [w(r) - u(r)] (17)
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region. In any event, when we go to the limita f 0, the
following expressions emerge:

Figure 7 gives a plot ofZ-1ws0(r) in accordance with eqs
18-20. The graph is the same for any value ofZ. Perhaps its
single most striking aspect is that it looks very much like the
one in Figure 4, showing ordinary Debye-Hückel screening
for the same system (interaction between a line charge and a
point charge of opposite sign). The effect of counterion release
is indubitably incorporated into our formulas and certainly gives
a negative contribution tows0(r). It must be offset by other
effects that weaken the inherent attraction of the ion-polyion
pair. It is not easy to pick these equations apart into their
constituent physical contributions. One way to rationalize our
result begins by noting that counterion release occurs progres-
sively as theZ-valent point ion approaches the oppositely

charged line across the intermediate region. The intermediate
region is characterized by partial screening [this statement is a
precise one,3 but it is also intuitively clear from the fact that
the values ofr in this region lie between (1/e)κ-1 and κ-1].
The unfavorable effect of partial screening on the attraction may
dominate the favorable free energy of counterion release. The
process of counterion release is finished when theZ-valent ion
arrives at the near-intermediate interface. No further release
of counterions occurs when the ion penetrates and crosses the
near region. Correspondingly, there is essentially no screening
within the near region (again, a precise statement3), andws0(r)
in Figure 7 can be seen to be close to zero in this region.

There is one difference between Figures 7 and 4, and it
concerns the salt dependence. For ordinary Debye-Hückel
screening as illustrated in Figure 4, raising the salt concentration
increases the amount of screening at all distancesr between
counterion and line charge. In contrast, Figure 7 for the full
counterion condensation theory of the counterion-polyion
interaction shows a crossover near the boundary between
intermediate and far regions. There exists a region in Figure 7
where higher salt concentration weakens the direct attractive
interaction between counterion and polyion less than lower salt.
The curves in Figure 7 cross back to the “normal” order at a
value of r well into the far region.

The counterion condensation theory is actually more com-
plicated than is sometimes supposed. In particular, the presence
of a Z-valent ion atr perturbs the internal partition function of
the counterions condensed on the line charge.3 This effect is
present in the theory, it exists in addition to the effects of
counterion release and screening, and it is important. We find
it hard to tell how it affects the qualitative features of Figure 7.
We may firmly conclude, however, that the negative values of
the JDB free energy found by Jayaram et al.1 in their simulation
of theλ repressor-operator system cannot be explained solely
as a manifestation of the favorable free energy generated by
release of condensed Na+ ions when a cationic protein residue
penetrates the condensed layer.

2.4. Modeling a Protein-DNA Interaction. In this section
we look at two models of a protein-DNA interaction in the
framework of counterion condensation theory. The DNA is
represented as a negatively charged line (i.e., a linear array of
point negative charges with spacingb). In the first model, the
“protein” is the bipolar ion whose interaction with a line charge
was analyzed above with limiting law Debye-Hückel theory
(Figure 5). The second model for the protein is a large collection
of positive and negative charges, given the coordinates of the
basic and acidic charged groups ofλ repressor protein.

The interaction among a collection of charges is not generally
pairwise additive in counterion condensation theory. For
example, the free energy of assembly of three line charges in
parallel array does not equal the sum of the free energies of
assembling the three pairs of line charges, each pair of charges
in isolation from the third charge.9 In the present case, the
question arises of whether we can equate the interaction free
energy of the line charge and the several charged sites on the
protein to the sum of the free energies of interaction of the line
charge with each of the charged protein sites considered in
isolation from the others. It turns out that we cannot. The overall
intermolecular potential of a negative line charge and a
counterion-co-ion pair is not equal tow+(r+) + w-(r-), where
the first term is the potential for the isolated counterion atr+
and the second is the potential for the isolated co-ion atr-.
What is true, however, is fortunately even simpler. The potential

(9) Ray, J.; Manning, G. S.Macromolecules2000, 33, 2901-2908.

Figure 6. Potential of mean forcew(r) in units ofZRTfor a Z-valent
counterion approaching a line charge in counterion condensation theory.
In these units, the graph is the same for any value ofZ. Solid curve,
0.1 M salt; dotted curve, 0.2 M salt. The charge density of the line,ê
) 4.2, is that of DNA and corresponds to charge spacingb ) 1.7 Å.

Figure 7. JDB function in units ofZRT for a Z-valent counterion
approaching a line charge (ê ) 4.2, b ) 1.7 Å) in counterion
condensation theory. Solid curve, 0.1 M salt; dotted curve, 0.2 M salt.

Near region:

Z-1ws0(r) ) 2ê[K0(κr) + ln(κr) - ln 2 + γ] (18)

Intermediate region:

Z-1ws0(r) ) 2ê[K0(κr) + ln(κr) - ln 2 + γ] -
2(ê - 1) ln(κb)[ln(κr) + 1] + ln(κr) + 1 (19)

Far region:

Z-1ws0(r) ) 2ê[K0(κr) + ln(κr) - ln 2 + γ] -
2(ê - 1) ln(κb) + 1 (20)
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for this case equalsw+(r+) - w+(r-). In other words, there is
additivity if we set the potential for the co-ion equal to the
potential for the counterion with changed sign, just as we would
in the context of Coulomb’s law or Debye-Hückel theory. The
argument is given in the Appendix.

2.4.1. Bipolar Ion. In this paragraph we continue our
consideration of the counterion-co-ion pair, or bipolar ion. A
point positive charge attached to a point negative charge with
rigid spacing l approaches a negative line charge in radial
orientation with the positive end head-on. The potentials are
expressed as functions of the distancer between the positive
end and the line charge. The negative end is always at distance
r + l from the line charge. Several regions of a “direct product”
space arise. For example, the positive end of the bipolar ion
can be in the near region, while the negative end is in the
intermediate region. A complete list of the six possibilities is
near-near, near-intermediate, near-far, intermediate-inter-
mediate, intermediate-far, and far-far. Of these six, only two
are always present regardless of the values of the bipolar ion
spacingl and the Debye screening lengthκ-1: the intermediate-
far and far-far regions. The near-near region is present only
if l < (1/e)κ-1. The near-intermediate region is present only if
l < κ-1. The near-far region is present only ifl > κ-1(1 -
e-1) (the width of the intermediate region). Finally, the
intermediate-intermediate region is present only ifl < κ-1(1
- e-1). Thus, a very short bipolar ion passes through five of
the six regions as it moves away from the line charge to infinity
(all but the near-far region), while a very long bipolar ion
encounters only three (the near-far, intermediate-far, and far-
far regions).

The pseudoadditivity discussed above makes it easy to write
down the potential of mean force (work required to bring the
bipolar ion from infinity to r) in each region. With the
abbreviations n) near, i) intermediate, and f) far, let for
examplewni(r) be the potential when the positive end is in the
near region atr and the negative end is in the intermediate region
at r + l. Then,wni(r) ) wn(r) - wi(r + l), wherewn(r) is given
by the right-hand side of eq 13, andwi(r + l) is the expression
on the right-hand side of eq 14 but evaluated atr + l instead of
r.

Figure 8 illustrates the potential whenl ) 4 Å andκ-1 ) 9.6
Å (0.1 M NaCl). The boundary between near and intermediate
regions is at (1/e)κ-1 ) 3.5 Å, so asr moves from a cutoff,
say, of 1 Å,3 the potentialw(r) passes successively through the
brancheswni(r) (1 e r e 3.5),wii (r) (3.5e r e 5.6),wif (r) (5.6
e r e 9.6), andwff(r) (9.6< r < ∞). Figure 8 may be compared

with Figure 6 for the potential of mean force of a counterion
and the line charge. The qualitative features of the potentials
are similar for the particular numerical values of the parameters
chosen, although differences in detail are evident.

In the calculation of the JDB salt free energyws0, we have
to realize that the reference state is atr ) 0 for the positive end
of the bipolar ion but atr ) l for the negative end. Thus, in the
near-intermediate region we get

wherews0
R (R ) n, i, f) is the salt effect function for a point

counterion (isolated positive end of the bipolar ion) in the near,
intermediate, or far region, as given by eqs 18, 19, and 20,
respectively, withZ ) 1. The negative end of the bipolar ion is
accounted for in the signs. The middle term of the right-hand
side is always the same. For example, to obtainws0

if , replace n
by i in the first term, leave the middle term unchanged, and
replace i in the last term by f.

We illustrate the salt function in Figure 9. The graph is
dominated by the minimum at negative values of the function.
The decreasing portion is in the near-intermediate region. Now
Figure 7 shows that the contribution to the salt function from
the positive end in the near region is almost zero. The positive
end is represented by the first term of the right-hand side in eq
21. The negative values in Figure 9 are generated by the middle
and last terms. Both of these terms appear only because of the
presence of the negatively charged end of the bipolar ion.
Therefore, the negative values and the minimum in Figure 9
are caused by the presence of the negative end (same sign charge
as the polyion) and are not correlated with the release of
counterions from the condensed layer surrounding the polyion.

2.4.2.λ Repressor Protein.A protein typically contains many
ionized groups, not just two. In the framework of our model,
the problem is to calculate the potential of mean force between
a line charge (the DNA) and a collection of unit positive and
negative point charges all with fixed positions relative to each
other (the protein). The problem is simplified by the pseudoad-
ditivity discussed above and in the Appendix, but it is still
complicated, because several protein charges may be in the near
region, several in the intermediate region, and several in the
far region; and the number of charges in each region, and the
mix of charge types, changes as the distance between protein
and DNA changes. In the “docked” position, i.e., in the protein-
DNA complex, we ascertain from crystallographic data the
distancedi between each ionized protein residuei and its nearest

Figure 8. Potential of mean forcew(r) (counterion condensation
theory) in units ofRT for a bipolar ion of length 4 Å approaching a
line charge (ê ) 4.2, b ) 1.7 Å), the oppositely charged end of the
bipolar ion coming head-first at distancer from the line. The ionic
strength is 0.1 M.

Figure 9. JDB function (counterion condensation theory) in units of
RT for a bipolar ion of length 4 Å approaching a line charge (ê ) 4.2,
b ) 1.7 Å), the oppositely charged end of the bipolar ion coming head-
first at distancer from the line. The ionic strength is 0.1 M.

ws0
ni(r) ) ws0

n (r) + ws0
i (l) - ws0

i (r + l) (21)
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DNA phosphate. In our model, the protein chargei ) 0 closest
to a DNA phosphate is placed at a cutoff distancea from the
line charge representing the DNA. The distance of any other
protein chargei is then set toa + di - d0. Then when we say
that the protein is at a distancer from the DNA, we mean that
the distancer has been added to the docking distance of each
protein charge. We have written an algorithm that generalizes
the case of the protein as bipolar ion to the protein as a collection
of an arbitrary number of positive and negative charges as
described. It follows from the analysis given in the Appendix
that the use of pseudoadditivity in the algorithm is justified if
each negative charge either (1) can be paired with a positive
charge closer to the DNA or (2) is so remote from the DNA
that it finds itself in the far region even in the closest possible
“docked” position of the protein.

In Figure 10, we show all the ionized protein residues
(positively charged lysines and arginines, negative glutamic and
aspartic acids) in the repressor-DNA complex as obtained from
the Nucleic Acid Database (http://ndbserver.rutgers.edu, code
PDR010). At the ionic strengths used in our calculations, 0.1
M NaCl and 0.2 M, the Debye screening lengths are 9.6 and
6.8 Å, respectively. The inside boundary of the far region at a
specified ionic strength is given by the corresponding value of
the screening length. It can be verified from Figure 10 that the
conditions for applicability of our additivity-based algorithm
are met. It should also be noted that the interface of theλ
repressor-operator complex contains only positively charged
protein residues. However, negatively charged groups are present
in the intermediate region and even outnumber the positive
charges there.

Figure 11 shows the ionic potential of mean force as a
function of distancer betweenλ repressor and its DNA operator
site. Comparison with Figures 6 and 8 reveals the similarity of
the protein potential to that of a counterion or bipolar ion. The
barrier to binding is prominent and creates a metastable position
located well away from the absolute minimum at the binding
site.

Figure 12 illustrates the calculated JDB salt effect function
for the repressor-DNA interaction. Our model reproduces the
minimum found by Jayaram et al.,1 which we attribute to the
influence of the co-ionic (negatively charged) protein residues
in the range of intermediate distances from the DNA binding
site. We agree with Jayaram et al. on the enhancement of the
minimum at lower ionic strengths, and, like these authors, we
also can see a crossover to an inverted salt dependence at larger
distances. This long-distance feature is delicate, however; we
do not see a crossover for all concentration pairs (not shown).
Recall that the long-distance crossover is observed also in Figure
7 for the salt effect on the counterion potential.

Discussion

For the process of bringing two ionized molecules from an
initial distancer to their final complexed position, we have
defined a salt effect functionws0(r) to represent the contribution
to the free energy change from interactions of the two reacting
molecules with all other small ions also present in the solution.
The function is defined to represent the same free energy as
that computed by Jayaram et al.1 in their Monte Carlo simulation
of λ repressor and DNA operator. We have examined cases
ranging from a simple ion-pairing reaction to theλ repressor-
operator complexation.

If the reacting ions are of opposite sign, the prior expectation
is for ws0(r) to be everywhere positive. The meaning of a positive
value of ws0(r) for a given distancer is that the other small
ions in the system act to weaken the direct attraction of the
reacting ions. We expect this behavior from simple Debye-
Hückel theory, which describes the effective weakening of an

Figure 10. Two-dimensional model of the ionic interactions in theλ
repressor-operator complex. The numbers on the axes are distances
in angstroms. The DNA phosphates are spaced at 1.7 Å. The cutoff
distancea (left arrow) is at 1 Å. The near region lies between the left
and center arrows, the intermediate region is between the center and
right arrows, and the far region extends beyond the right arrow (a Debye
length from the DNA). The near-intermediate and intermediate-far
boundaries depend on ionic strength; the positions shown correspond
to 0.1 M.

Figure 11. Potential of mean forcew(r) in kcal mol-1 at 298 K forλ
repressor and DNA in counterion condensation theory. Solid curve,
0.1 M salt; dotted curve, 0.2 M salt.

Figure 12. JDB function in kcal mol-1 at 298 K for theλ repressor-
DNA interaction in counterion condensation theory. Solid curve, 0.1
M salt; dotted curve, 0.2 M salt.
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ionic charge in solution by a surrounding screening atmosphere
of net opposite charge. We indeed find the expected behavior
for some of the systems we have looked at, such as an ion pair
(Figure 2), the complexation of an ion with the oppositely
charged end of an amino acid (Figure 3), and the complexation
of an ion with an oppositely charged polyion (Figures 4 and
7). In connection with Figure 7, which illustrates the application
of counterion condensation theory to the reaction of aZ-valent
ion with an oppositely charged polyion, we noted thatZ
univalent counterions are released from the polyion when its
condensed layer is penetrated by theZ-valent ion. The release
of counterions contributes a favorable free energy to the binding
of theZ-valent ion. Nonetheless, the overall effect of small ions
in the solution, including the condensed counterions, is to
weaken the attraction between theZ-valent ion and the polyion
at all distances.

A dramatically unexpected effect is obtained, however, when
a polyion binds the oppositely charged end of a bipolar amino
acid, as analyzed either by Debye-Hückel or counterion
condensation theory (Figures 5 and 9, respectively). For this
case, the functionws0(r) descends from its reference value zero
at the binding position into a range of negative values before
reaching a minimum and then increasing into the familiar regime
of positive values. A negative value ofws0(r) for some given
distancer means that the direct attractive force at that distance
between the polyion and the bipolar ion (which is oriented with
its oppositely charged end closest to the polyion) is made
stronger by the presence of the other small ions in the solution.
We have identified the reason for this counterintuitive salt effect
as reflecting the interaction of the polyion with the co-ionic
end of the bipolar ion (the COO- end of an amino acid binding
to DNA, for example). The end of the bipolar ion bearing a
charge of the same sign as the polyion is directly repelled by
the polyion. The other small ions present in the system act to
weaken the repulsion, thereby effectively strengthening the
overall attraction between the polyion and the bipolar ion.

The action of small ions in augmenting a direct Coulomb
attractive force, an effect exactly the opposite of expectation
from Debye-Hückel screening considerations, persists in the
case of the binding of theλ repressor protein to its operator
site on DNA (Figure 12). Although in the protein-DNA bound
complex the protein charges closest to the DNA are all positive
(Figure 10), there are several negative protein charges at
intermediate distances from the DNA phosphates. The co-ionic
protein charges (glutamic and aspartic acid residues) are directly
repelled by the phosphates. The direct repulsion is mitigated
by the presence of Na+ and Cl- ions, which therefore favors
the movement of the protein toward the DNA from relatively
close separations. This fine-tuning of the protein-DNA interac-
tion by negatively charged protein groups not in the binding
site but not far from it points to a possible utility of these
residues beyond maintenance of aqueous solubility.

We have also provided some results for the ordinary potential
of mean forcew(r). This function gives the overall work required
to bring two charged molecules from infinity to distancer,
including the effect of interaction with all other ions in the
system. Figure 5 contains an illustration ofw(r) as given by
Debye-Hückel theory for the approach of a bipolar ion toward
a polyion, the oppositely charged end coming first. The curve
has the appearance of an ordinary screened Coulomb attraction.
The application of counterion condensation theory gives a
different result, as seen in Figure 6 for the interaction of a
Z-valent ion and an oppositely charged polyion. A free energy
barrier to binding is a prominent feature ofw(r). If the Z-valent

ion is a singled-out univalent counterion, the barrier causes
separation of the counterions into two spatially separated
populations, the condensed counterions on the near side of the
barrier and the Debye-Hückel atmospheric counterions on the
far side.3 For the approach of a bipolar ion to a polyion, the
oppositely charged end coming first, counterion condensation
theory as exhibited in Figure 8 again provides a barrier to
binding of the oppositely charged end.

The barrier to binding persists for theλ repressor-DNA
complex (Figure 11). Because the protein is attracted to its DNA
destination at far distances, the barrier creates a deep (nearly
10 kcal) metastable position at its far side, well removed (7-
10 Å) from the absolute minimum at the binding site. Possible
transient storage of the protein at this remote local minimum
should be kept in mind in any detailed consideration of the
binding ofλ repressor to its operator site, or of its release from
the operator. Zacharias et al. have made a similar observation.10

The potential that we have calculated contains, of course, only
the ionic protein-DNA interactions. On the other hand, the
additional short-range interactions contributing to the overall
potential of mean force may be too weak at distances removed
from the binding site to distort significantly either the ionic
barrier to binding or the remote minimum.

Although the minimum in the JDB function observed in
Figure 12, and the crossover at far distances, are both in
agreement with the simulation of Jayaram et al.,1 we disagree
on the magnitude of the salt effect at far separations. At far
separations, the JDB function returns the effect of small ions
on the free energy of binding starting from the separate species.
Noting the high positive free energy values at larger in Figure
12, we can say that our calculated effect of salt (all small ions,
including the counterions of the DNA and protein) is strongly
unfavorable toward binding from the isolated species by about
40-45 kcal, whereas the simulated data of Jayaram et al.
produce only a few kilocalories of unfavorable free energy (see
their Figure 3). On the other hand, Misra et al.11 have observed
from numerical Poisson-Boltzmann calculations an unfavorable
free energy of about 18 kcal due to the presence of small ions
for the complexation ofλ repressor and DNA operator; and from
a completely different protocol, Jayaram et al. give an estimate
of 132 kcal for the effect of small ions on complexation of this
protein (B. Jayaram, private communication). Thus, we currently
have estimates of the effect of small ions onλ repressor-
operator binding (from the protein and DNA species either
isolated or at large distances), all of which represent unfavorable
free energy but range from a few kilocalories to over 100 kcal.
Our estimate of 40-45 kcal is somewhere in the middle.

Acknowledgment. We are grateful to B. Jayaram for
extended correspondence and to the U.S. Public Health Service
for partial support of our research through Grant GM36284.

Appendix

If a polyelectrolyte solution is treated within Debye-Hückel
theory, the counterion and co-ion potentials are everywhere
essentially the same. Both equal the product of their respective
charges with the electrostatic potential set up by the polyion.
They differ, therefore, only in their sign. In counterion
condensation theory, however, the counterion and co-ion
potentials differ in a more fundamental way, at least in the near
and intermediate regions.3 A co-ion positioned inside the near

(10) Zacharias, M.; Luty, B. A.; Davis, M. E.; McCammon, J. A.Biophys.
J. 1992, 63, 1280-1285.

(11) Misra, V. K.; Hecht, J. L.; Sharp, K. A.; Friedman, R. A.; Honig,
B. J. Mol. Biol. 1994, 238, 264-280.
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region behaves like one of the charged groups on the polyion.
The charge on the co-ion is renormalized by condensed
counterions to the same extent as any of the charged groups on
the polyion. A co-ion in the intermediate region behaves like a
fractionally charged polyion group. The co-ion potential equals
the negative of the counterion potential only in the Debye-
Hückel-like far region. This situation destroys additivity. If a
bipolar ion (which may be thought of as a counterion-co-ion
pair) approaches a polyion, a strict additivity rule (overall
potential equals isolated counterion potential plus isolated co-
ion potential) is applicable only if the co-ion end of the bipolar
ion is located in the far region.

Consider a bipolar ion located such that both of its ends are
inside the near region. If the polyion is negatively charged, then
the negative end of the bipolar ion may cooperate with theP
charged groups on the polyion in the formation of a condensed
layer of counterions. On the other hand, attached as it is to the
positive end, the negative end is certainly distinct from a charged
group on the polyion. Therefore, we use a renormalized charge
-(1 - θ′)q for the negative end of the bipolar ion, in contrast
to theP renormalized charges-(1 - θ)q on the polyion. Here,
θ andθ′ are the fractional numbers of counterions condensed
on each polyion charge and the negative end of the bipolar ion,
respectively. For the polyion,θP makes sense as the total
number of counterions shared by all the polyion charges in a
condensed layer. An interpretation for the negative end of the
bipolar ion would be that it is associated with a condensed
counterion for the fraction of timeθ′.

The free energy is set up along lines parallel to the
development in ref 3. The number of counterions transferred
from bulk concentrationc to the condensed layer around the
polyion or to the negative end of the bipolar ion isPθ + θ′.
The interaction free energy between the negative end atr′ and
the polyion equals 2ê(1 - θ)(1 - θ′)K0(κr′). The total free
energy is minimized by setting its derivatives with respect toθ
andθ′ separately equal to zero. In the two resulting equations,
the lnc terms are isolated and their coefficients are set equal to
zero. The two equations resulting from this operation are

and

The solution of eq 22 isθ ) 1 - (1/ê), and when this value
of θ is substituted into eq 23, it becomes clear thatθ′ ) 0. The

minimizing value ofθ is familiar: P(1 - ê-1) is the total
number of univalent counterions condensed on an isolated
polyion with P charged groups. Intrusion of both ends of the
overall neutral bipolar ion into the near region does not change
the net charge density in this region, so there is no net release
or gain of counterions on the polyion. Similarly, the negative
end of the bipolar ion is unassociated with independent
counterions,θ′ ) 0, because the additional counterion required
to condense into the near region in order to maintain the effective
polyion charge density equal to the critical condensation value
is automatically supplied by the positive end.

Since the number of counterions condensed on the negative
end of the bipolar ion is zero in the far region, and, as we have
just seen, in the near region as well, we may assume with some
assurance that none are condensed on the negative end in the
intermediate region. The physical reason would be that the
negative end in the intermediate region would at most be
required to condense some fraction of a counterion (in a time-
average sense), and this requirement is overfulfilled by the unit
charge forced to accompany the negative end as part of the
covalent structure of the bipolar ion. In fact, we have verified
that the intermediate region equations corresponding to eqs 22
and 23 have no solution in the physically meaningful range 0
e θ′ e 1; free energy minimization at the boundary valueθ′ )
0 is then the only plausible alternative. We generalize this rule
to the collection of negative charged residues on a DNA-binding
protein with net zero or positive charge: none of the negative
protein charges are ion-paired with counterions. An additivity
rule for the entire collection of protein charges, positive and
negative, then follows if we set the potential for each negative
charge equal to the potential for a positive charge but for a sign
change.

The requirementθ′ ) 0 (no ion-pairing of a negative protein
charge with counterions) does not mean thatPθ, the number of
counterions condensed on the DNA, is unaffected by the protein
charges. For example, each positive protein charge located in
the near region of DNA results in the release of one univalent
counterion from the condensed layer. Similarly, each negative
protein charge located in the near region of DNA would result
in the addition of one counterion to the condensed layer (but
this additional counterion is not ion-paired to the negative
protein charge). If there are more positive protein charges in
the near region than negative protein charges, there is a net
release of counterions from the condensed layer. Protein charges
positioned in the intermediate region, both positive and negative,
also influence the value ofPθ.

JA9942437

ê(1 - θ) - 1 ) 0 (22)

ê(1 - θ) - 1 - ê
P

+
ê(1 - θ′)

P
) 0 (23)
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